home *** CD-ROM | disk | FTP | other *** search
Text File | 2001-02-23 | 25.2 KB | 1,094 lines |
- # $RCSFile$
- #
- # Complex numbers and associated mathematical functions
- # -- Raphael Manfredi, Sept 1996
-
- require Exporter;
- package Math::Complex; @ISA = qw(Exporter);
-
- @EXPORT = qw(
- pi i Re Im arg
- log10 logn cbrt root
- tan cotan asin acos atan acotan
- sinh cosh tanh cotanh asinh acosh atanh acotanh
- cplx cplxe
- );
-
- use overload
- '+' => \&plus,
- '-' => \&minus,
- '*' => \&multiply,
- '/' => \÷,
- '**' => \&power,
- '<=>' => \&spaceship,
- 'neg' => \&negate,
- '~' => \&conjugate,
- 'abs' => \&abs,
- 'sqrt' => \&sqrt,
- 'exp' => \&exp,
- 'log' => \&log,
- 'sin' => \&sin,
- 'cos' => \&cos,
- 'atan2' => \&atan2,
- qw("" stringify);
-
- #
- # Package globals
- #
-
- $package = 'Math::Complex'; # Package name
- $display = 'cartesian'; # Default display format
-
- #
- # Object attributes (internal):
- # cartesian [real, imaginary] -- cartesian form
- # polar [rho, theta] -- polar form
- # c_dirty cartesian form not up-to-date
- # p_dirty polar form not up-to-date
- # display display format (package's global when not set)
- #
-
- #
- # ->make
- #
- # Create a new complex number (cartesian form)
- #
- sub make {
- my $self = bless {}, shift;
- my ($re, $im) = @_;
- $self->{cartesian} = [$re, $im];
- $self->{c_dirty} = 0;
- $self->{p_dirty} = 1;
- return $self;
- }
-
- #
- # ->emake
- #
- # Create a new complex number (exponential form)
- #
- sub emake {
- my $self = bless {}, shift;
- my ($rho, $theta) = @_;
- $theta += pi() if $rho < 0;
- $self->{polar} = [abs($rho), $theta];
- $self->{p_dirty} = 0;
- $self->{c_dirty} = 1;
- return $self;
- }
-
- sub new { &make } # For backward compatibility only.
-
- #
- # cplx
- #
- # Creates a complex number from a (re, im) tuple.
- # This avoids the burden of writing Math::Complex->make(re, im).
- #
- sub cplx {
- my ($re, $im) = @_;
- return $package->make($re, $im);
- }
-
- #
- # cplxe
- #
- # Creates a complex number from a (rho, theta) tuple.
- # This avoids the burden of writing Math::Complex->emake(rho, theta).
- #
- sub cplxe {
- my ($rho, $theta) = @_;
- return $package->emake($rho, $theta);
- }
-
- #
- # pi
- #
- # The number defined as 2 * pi = 360 degrees
- #
- sub pi () {
- $pi = 4 * atan2(1, 1) unless $pi;
- return $pi;
- }
-
- #
- # i
- #
- # The number defined as i*i = -1;
- #
- sub i () {
- $i = bless {} unless $i; # There can be only one i
- $i->{cartesian} = [0, 1];
- $i->{polar} = [1, pi/2];
- $i->{c_dirty} = 0;
- $i->{p_dirty} = 0;
- return $i;
- }
-
- #
- # Attribute access/set routines
- #
-
- sub cartesian {$_[0]->{c_dirty} ? $_[0]->update_cartesian : $_[0]->{cartesian}}
- sub polar {$_[0]->{p_dirty} ? $_[0]->update_polar : $_[0]->{polar}}
-
- sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{cartesian} = $_[1] }
- sub set_polar { $_[0]->{c_dirty}++; $_[0]->{polar} = $_[1] }
-
- #
- # ->update_cartesian
- #
- # Recompute and return the cartesian form, given accurate polar form.
- #
- sub update_cartesian {
- my $self = shift;
- my ($r, $t) = @{$self->{polar}};
- $self->{c_dirty} = 0;
- return $self->{cartesian} = [$r * cos $t, $r * sin $t];
- }
-
- #
- #
- # ->update_polar
- #
- # Recompute and return the polar form, given accurate cartesian form.
- #
- sub update_polar {
- my $self = shift;
- my ($x, $y) = @{$self->{cartesian}};
- $self->{p_dirty} = 0;
- return $self->{polar} = [0, 0] if $x == 0 && $y == 0;
- return $self->{polar} = [sqrt($x*$x + $y*$y), atan2($y, $x)];
- }
-
- #
- # (plus)
- #
- # Computes z1+z2.
- #
- sub plus {
- my ($z1, $z2, $regular) = @_;
- my ($re1, $im1) = @{$z1->cartesian};
- my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2);
- unless (defined $regular) {
- $z1->set_cartesian([$re1 + $re2, $im1 + $im2]);
- return $z1;
- }
- return (ref $z1)->make($re1 + $re2, $im1 + $im2);
- }
-
- #
- # (minus)
- #
- # Computes z1-z2.
- #
- sub minus {
- my ($z1, $z2, $inverted) = @_;
- my ($re1, $im1) = @{$z1->cartesian};
- my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2);
- unless (defined $inverted) {
- $z1->set_cartesian([$re1 - $re2, $im1 - $im2]);
- return $z1;
- }
- return $inverted ?
- (ref $z1)->make($re2 - $re1, $im2 - $im1) :
- (ref $z1)->make($re1 - $re2, $im1 - $im2);
- }
-
- #
- # (multiply)
- #
- # Computes z1*z2.
- #
- sub multiply {
- my ($z1, $z2, $regular) = @_;
- my ($r1, $t1) = @{$z1->polar};
- my ($r2, $t2) = ref $z2 ? @{$z2->polar} : (abs($z2), $z2 >= 0 ? 0 : pi);
- unless (defined $regular) {
- $z1->set_polar([$r1 * $r2, $t1 + $t2]);
- return $z1;
- }
- return (ref $z1)->emake($r1 * $r2, $t1 + $t2);
- }
-
- #
- # (divide)
- #
- # Computes z1/z2.
- #
- sub divide {
- my ($z1, $z2, $inverted) = @_;
- my ($r1, $t1) = @{$z1->polar};
- my ($r2, $t2) = ref $z2 ? @{$z2->polar} : (abs($z2), $z2 >= 0 ? 0 : pi);
- unless (defined $inverted) {
- $z1->set_polar([$r1 / $r2, $t1 - $t2]);
- return $z1;
- }
- return $inverted ?
- (ref $z1)->emake($r2 / $r1, $t2 - $t1) :
- (ref $z1)->emake($r1 / $r2, $t1 - $t2);
- }
-
- #
- # (power)
- #
- # Computes z1**z2 = exp(z2 * log z1)).
- #
- sub power {
- my ($z1, $z2, $inverted) = @_;
- return exp($z1 * log $z2) if defined $inverted && $inverted;
- return exp($z2 * log $z1);
- }
-
- #
- # (spaceship)
- #
- # Computes z1 <=> z2.
- # Sorts on the real part first, then on the imaginary part. Thus 2-4i > 3+8i.
- #
- sub spaceship {
- my ($z1, $z2, $inverted) = @_;
- my ($re1, $im1) = @{$z1->cartesian};
- my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2);
- my $sgn = $inverted ? -1 : 1;
- return $sgn * ($re1 <=> $re2) if $re1 != $re2;
- return $sgn * ($im1 <=> $im2);
- }
-
- #
- # (negate)
- #
- # Computes -z.
- #
- sub negate {
- my ($z) = @_;
- if ($z->{c_dirty}) {
- my ($r, $t) = @{$z->polar};
- return (ref $z)->emake($r, pi + $t);
- }
- my ($re, $im) = @{$z->cartesian};
- return (ref $z)->make(-$re, -$im);
- }
-
- #
- # (conjugate)
- #
- # Compute complex's conjugate.
- #
- sub conjugate {
- my ($z) = @_;
- if ($z->{c_dirty}) {
- my ($r, $t) = @{$z->polar};
- return (ref $z)->emake($r, -$t);
- }
- my ($re, $im) = @{$z->cartesian};
- return (ref $z)->make($re, -$im);
- }
-
- #
- # (abs)
- #
- # Compute complex's norm (rho).
- #
- sub abs {
- my ($z) = @_;
- my ($r, $t) = @{$z->polar};
- return abs($r);
- }
-
- #
- # arg
- #
- # Compute complex's argument (theta).
- #
- sub arg {
- my ($z) = @_;
- return 0 unless ref $z;
- my ($r, $t) = @{$z->polar};
- return $t;
- }
-
- #
- # (sqrt)
- #
- # Compute sqrt(z) (positive only).
- #
- sub sqrt {
- my ($z) = @_;
- my ($r, $t) = @{$z->polar};
- return (ref $z)->emake(sqrt($r), $t/2);
- }
-
- #
- # cbrt
- #
- # Compute cbrt(z) (cubic root, primary only).
- #
- sub cbrt {
- my ($z) = @_;
- return $z ** (1/3) unless ref $z;
- my ($r, $t) = @{$z->polar};
- return (ref $z)->emake($r**(1/3), $t/3);
- }
-
- #
- # root
- #
- # Computes all nth root for z, returning an array whose size is n.
- # `n' must be a positive integer.
- #
- # The roots are given by (for k = 0..n-1):
- #
- # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
- #
- sub root {
- my ($z, $n) = @_;
- $n = int($n + 0.5);
- return undef unless $n > 0;
- my ($r, $t) = ref $z ? @{$z->polar} : (abs($z), $z >= 0 ? 0 : pi);
- my @root;
- my $k;
- my $theta_inc = 2 * pi / $n;
- my $rho = $r ** (1/$n);
- my $theta;
- my $complex = ref($z) || $package;
- for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) {
- push(@root, $complex->emake($rho, $theta));
- }
- return @root;
- }
-
- #
- # Re
- #
- # Return Re(z).
- #
- sub Re {
- my ($z) = @_;
- return $z unless ref $z;
- my ($re, $im) = @{$z->cartesian};
- return $re;
- }
-
- #
- # Im
- #
- # Return Im(z).
- #
- sub Im {
- my ($z) = @_;
- return 0 unless ref $z;
- my ($re, $im) = @{$z->cartesian};
- return $im;
- }
-
- #
- # (exp)
- #
- # Computes exp(z).
- #
- sub exp {
- my ($z) = @_;
- my ($x, $y) = @{$z->cartesian};
- return (ref $z)->emake(exp($x), $y);
- }
-
- #
- # (log)
- #
- # Compute log(z).
- #
- sub log {
- my ($z) = @_;
- my ($r, $t) = @{$z->polar};
- return (ref $z)->make(log($r), $t);
- }
-
- #
- # log10
- #
- # Compute log10(z).
- #
- sub log10 {
- my ($z) = @_;
- $log10 = log(10) unless defined $log10;
- return log($z) / $log10 unless ref $z;
- my ($r, $t) = @{$z->polar};
- return (ref $z)->make(log($r) / $log10, $t / $log10);
- }
-
- #
- # logn
- #
- # Compute logn(z,n) = log(z) / log(n)
- #
- sub logn {
- my ($z, $n) = @_;
- my $logn = $logn{$n};
- $logn = $logn{$n} = log($n) unless defined $logn; # Cache log(n)
- return log($z) / log($n);
- }
-
- #
- # (cos)
- #
- # Compute cos(z) = (exp(iz) + exp(-iz))/2.
- #
- sub cos {
- my ($z) = @_;
- my ($x, $y) = @{$z->cartesian};
- my $ey = exp($y);
- my $ey_1 = 1 / $ey;
- return (ref $z)->make(cos($x) * ($ey + $ey_1)/2, sin($x) * ($ey_1 - $ey)/2);
- }
-
- #
- # (sin)
- #
- # Compute sin(z) = (exp(iz) - exp(-iz))/2.
- #
- sub sin {
- my ($z) = @_;
- my ($x, $y) = @{$z->cartesian};
- my $ey = exp($y);
- my $ey_1 = 1 / $ey;
- return (ref $z)->make(sin($x) * ($ey + $ey_1)/2, cos($x) * ($ey - $ey_1)/2);
- }
-
- #
- # tan
- #
- # Compute tan(z) = sin(z) / cos(z).
- #
- sub tan {
- my ($z) = @_;
- return sin($z) / cos($z);
- }
-
- #
- # cotan
- #
- # Computes cotan(z) = 1 / tan(z).
- #
- sub cotan {
- my ($z) = @_;
- return cos($z) / sin($z);
- }
-
- #
- # acos
- #
- # Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).
- #
- sub acos {
- my ($z) = @_;
- my $cz = $z*$z - 1;
- $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0
- return ~i * log($z + sqrt $cz); # ~i is -i
- }
-
- #
- # asin
- #
- # Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).
- #
- sub asin {
- my ($z) = @_;
- my $cz = 1 - $z*$z;
- $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0
- return ~i * log(i * $z + sqrt $cz); # ~i is -i
- }
-
- #
- # atan
- #
- # Computes the arc tagent atan(z) = i/2 log((i+z) / (i-z)).
- #
- sub atan {
- my ($z) = @_;
- return i/2 * log((i + $z) / (i - $z));
- }
-
- #
- # acotan
- #
- # Computes the arc cotangent acotan(z) = -i/2 log((i+z) / (z-i))
- #
- sub acotan {
- my ($z) = @_;
- return i/-2 * log((i + $z) / ($z - i));
- }
-
- #
- # cosh
- #
- # Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.
- #
- sub cosh {
- my ($z) = @_;
- my ($x, $y) = ref $z ? @{$z->cartesian} : ($z);
- my $ex = exp($x);
- my $ex_1 = 1 / $ex;
- return ($ex + $ex_1)/2 unless ref $z;
- return (ref $z)->make(cos($y) * ($ex + $ex_1)/2, sin($y) * ($ex - $ex_1)/2);
- }
-
- #
- # sinh
- #
- # Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.
- #
- sub sinh {
- my ($z) = @_;
- my ($x, $y) = ref $z ? @{$z->cartesian} : ($z);
- my $ex = exp($x);
- my $ex_1 = 1 / $ex;
- return ($ex - $ex_1)/2 unless ref $z;
- return (ref $z)->make(cos($y) * ($ex - $ex_1)/2, sin($y) * ($ex + $ex_1)/2);
- }
-
- #
- # tanh
- #
- # Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).
- #
- sub tanh {
- my ($z) = @_;
- return sinh($z) / cosh($z);
- }
-
- #
- # cotanh
- #
- # Comptutes the hyperbolic cotangent cotanh(z) = cosh(z) / sinh(z).
- #
- sub cotanh {
- my ($z) = @_;
- return cosh($z) / sinh($z);
- }
-
- #
- # acosh
- #
- # Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).
- #
- sub acosh {
- my ($z) = @_;
- my $cz = $z*$z - 1;
- $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0
- return log($z + sqrt $cz);
- }
-
- #
- # asinh
- #
- # Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1))
- #
- sub asinh {
- my ($z) = @_;
- my $cz = $z*$z + 1; # Already complex if <0
- return log($z + sqrt $cz);
- }
-
- #
- # atanh
- #
- # Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).
- #
- sub atanh {
- my ($z) = @_;
- my $cz = (1 + $z) / (1 - $z);
- $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0
- return log($cz) / 2;
- }
-
- #
- # acotanh
- #
- # Computes the arc hyperbolic cotangent acotanh(z) = 1/2 log((1+z) / (z-1)).
- #
- sub acotanh {
- my ($z) = @_;
- my $cz = (1 + $z) / ($z - 1);
- $cz = cplx($cz, 0) if !ref $cz && $cz < 0; # Force complex if <0
- return log($cz) / 2;
- }
-
- #
- # (atan2)
- #
- # Compute atan(z1/z2).
- #
- sub atan2 {
- my ($z1, $z2, $inverted) = @_;
- my ($re1, $im1) = @{$z1->cartesian};
- my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2);
- my $tan;
- if (defined $inverted && $inverted) { # atan(z2/z1)
- return pi * ($re2 > 0 ? 1 : -1) if $re1 == 0 && $im1 == 0;
- $tan = $z2 / $z1;
- } else {
- return pi * ($re1 > 0 ? 1 : -1) if $re2 == 0 && $im2 == 0;
- $tan = $z1 / $z2;
- }
- return atan($tan);
- }
-
- #
- # display_format
- # ->display_format
- #
- # Set (fetch if no argument) display format for all complex numbers that
- # don't happen to have overrriden it via ->display_format
- #
- # When called as a method, this actually sets the display format for
- # the current object.
- #
- # Valid object formats are 'c' and 'p' for cartesian and polar. The first
- # letter is used actually, so the type can be fully spelled out for clarity.
- #
- sub display_format {
- my $self = shift;
- my $format = undef;
-
- if (ref $self) { # Called as a method
- $format = shift;
- } else { # Regular procedure call
- $format = $self;
- undef $self;
- }
-
- if (defined $self) {
- return defined $self->{display} ? $self->{display} : $display
- unless defined $format;
- return $self->{display} = $format;
- }
-
- return $display unless defined $format;
- return $display = $format;
- }
-
- #
- # (stringify)
- #
- # Show nicely formatted complex number under its cartesian or polar form,
- # depending on the current display format:
- #
- # . If a specific display format has been recorded for this object, use it.
- # . Otherwise, use the generic current default for all complex numbers,
- # which is a package global variable.
- #
- sub stringify {
- my ($z) = shift;
- my $format;
-
- $format = $display;
- $format = $z->{display} if defined $z->{display};
-
- return $z->stringify_polar if $format =~ /^p/i;
- return $z->stringify_cartesian;
- }
-
- #
- # ->stringify_cartesian
- #
- # Stringify as a cartesian representation 'a+bi'.
- #
- sub stringify_cartesian {
- my $z = shift;
- my ($x, $y) = @{$z->cartesian};
- my ($re, $im);
-
- $re = "$x" if abs($x) >= 1e-14;
- if ($y == 1) { $im = 'i' }
- elsif ($y == -1) { $im = '-i' }
- elsif (abs($y) >= 1e-14) { $im = "${y}i" }
-
- my $str;
- $str = $re if defined $re;
- $str .= "+$im" if defined $im;
- $str =~ s/\+-/-/;
- $str =~ s/^\+//;
- $str = '0' unless $str;
-
- return $str;
- }
-
- #
- # ->stringify_polar
- #
- # Stringify as a polar representation '[r,t]'.
- #
- sub stringify_polar {
- my $z = shift;
- my ($r, $t) = @{$z->polar};
- my $theta;
-
- return '[0,0]' if $r <= 1e-14;
-
- my $tpi = 2 * pi;
- my $nt = $t / $tpi;
- $nt = ($nt - int($nt)) * $tpi;
- $nt += $tpi if $nt < 0; # Range [0, 2pi]
-
- if (abs($nt) <= 1e-14) { $theta = 0 }
- elsif (abs(pi-$nt) <= 1e-14) { $theta = 'pi' }
-
- return "\[$r,$theta\]" if defined $theta;
-
- #
- # Okay, number is not a real. Try to identify pi/n and friends...
- #
-
- $nt -= $tpi if $nt > pi;
- my ($n, $k, $kpi);
-
- for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) {
- $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5);
- if (abs($kpi/$n - $nt) <= 1e-14) {
- $theta = ($nt < 0 ? '-':'').($k == 1 ? 'pi':"${k}pi").'/'.abs($n);
- last;
- }
- }
-
- $theta = $nt unless defined $theta;
-
- return "\[$r,$theta\]";
- }
-
- 1;
- __END__
-
- =head1 NAME
-
- Math::Complex - complex numbers and associated mathematical functions
-
- =head1 SYNOPSIS
-
- use Math::Complex;
- $z = Math::Complex->make(5, 6);
- $t = 4 - 3*i + $z;
- $j = cplxe(1, 2*pi/3);
-
- =head1 DESCRIPTION
-
- This package lets you create and manipulate complex numbers. By default,
- I<Perl> limits itself to real numbers, but an extra C<use> statement brings
- full complex support, along with a full set of mathematical functions
- typically associated with and/or extended to complex numbers.
-
- If you wonder what complex numbers are, they were invented to be able to solve
- the following equation:
-
- x*x = -1
-
- and by definition, the solution is noted I<i> (engineers use I<j> instead since
- I<i> usually denotes an intensity, but the name does not matter). The number
- I<i> is a pure I<imaginary> number.
-
- The arithmetics with pure imaginary numbers works just like you would expect
- it with real numbers... you just have to remember that
-
- i*i = -1
-
- so you have:
-
- 5i + 7i = i * (5 + 7) = 12i
- 4i - 3i = i * (4 - 3) = i
- 4i * 2i = -8
- 6i / 2i = 3
- 1 / i = -i
-
- Complex numbers are numbers that have both a real part and an imaginary
- part, and are usually noted:
-
- a + bi
-
- where C<a> is the I<real> part and C<b> is the I<imaginary> part. The
- arithmetic with complex numbers is straightforward. You have to
- keep track of the real and the imaginary parts, but otherwise the
- rules used for real numbers just apply:
-
- (4 + 3i) + (5 - 2i) = (4 + 5) + i(3 - 2) = 9 + i
- (2 + i) * (4 - i) = 2*4 + 4i -2i -i*i = 8 + 2i + 1 = 9 + 2i
-
- A graphical representation of complex numbers is possible in a plane
- (also called the I<complex plane>, but it's really a 2D plane).
- The number
-
- z = a + bi
-
- is the point whose coordinates are (a, b). Actually, it would
- be the vector originating from (0, 0) to (a, b). It follows that the addition
- of two complex numbers is a vectorial addition.
-
- Since there is a bijection between a point in the 2D plane and a complex
- number (i.e. the mapping is unique and reciprocal), a complex number
- can also be uniquely identified with polar coordinates:
-
- [rho, theta]
-
- where C<rho> is the distance to the origin, and C<theta> the angle between
- the vector and the I<x> axis. There is a notation for this using the
- exponential form, which is:
-
- rho * exp(i * theta)
-
- where I<i> is the famous imaginary number introduced above. Conversion
- between this form and the cartesian form C<a + bi> is immediate:
-
- a = rho * cos(theta)
- b = rho * sin(theta)
-
- which is also expressed by this formula:
-
- z = rho * exp(i * theta) = rho * (cos theta + i * sin theta)
-
- In other words, it's the projection of the vector onto the I<x> and I<y>
- axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
- the I<argument> of the complex number. The I<norm> of C<z> will be
- noted C<abs(z)>.
-
- The polar notation (also known as the trigonometric
- representation) is much more handy for performing multiplications and
- divisions of complex numbers, whilst the cartesian notation is better
- suited for additions and substractions. Real numbers are on the I<x>
- axis, and therefore I<theta> is zero.
-
- All the common operations that can be performed on a real number have
- been defined to work on complex numbers as well, and are merely
- I<extensions> of the operations defined on real numbers. This means
- they keep their natural meaning when there is no imaginary part, provided
- the number is within their definition set.
-
- For instance, the C<sqrt> routine which computes the square root of
- its argument is only defined for positive real numbers and yields a
- positive real number (it is an application from B<R+> to B<R+>).
- If we allow it to return a complex number, then it can be extended to
- negative real numbers to become an application from B<R> to B<C> (the
- set of complex numbers):
-
- sqrt(x) = x >= 0 ? sqrt(x) : sqrt(-x)*i
-
- It can also be extended to be an application from B<C> to B<C>,
- whilst its restriction to B<R> behaves as defined above by using
- the following definition:
-
- sqrt(z = [r,t]) = sqrt(r) * exp(i * t/2)
-
- Indeed, a negative real number can be noted C<[x,pi]>
- (the modulus I<x> is always positive, so C<[x,pi]> is really C<-x>, a
- negative number)
- and the above definition states that
-
- sqrt([x,pi]) = sqrt(x) * exp(i*pi/2) = [sqrt(x),pi/2] = sqrt(x)*i
-
- which is exactly what we had defined for negative real numbers above.
-
- All the common mathematical functions defined on real numbers that
- are extended to complex numbers share that same property of working
- I<as usual> when the imaginary part is zero (otherwise, it would not
- be called an extension, would it?).
-
- A I<new> operation possible on a complex number that is
- the identity for real numbers is called the I<conjugate>, and is noted
- with an horizontal bar above the number, or C<~z> here.
-
- z = a + bi
- ~z = a - bi
-
- Simple... Now look:
-
- z * ~z = (a + bi) * (a - bi) = a*a + b*b
-
- We saw that the norm of C<z> was noted C<abs(z)> and was defined as the
- distance to the origin, also known as:
-
- rho = abs(z) = sqrt(a*a + b*b)
-
- so
-
- z * ~z = abs(z) ** 2
-
- If z is a pure real number (i.e. C<b == 0>), then the above yields:
-
- a * a = abs(a) ** 2
-
- which is true (C<abs> has the regular meaning for real number, i.e. stands
- for the absolute value). This example explains why the norm of C<z> is
- noted C<abs(z)>: it extends the C<abs> function to complex numbers, yet
- is the regular C<abs> we know when the complex number actually has no
- imaginary part... This justifies I<a posteriori> our use of the C<abs>
- notation for the norm.
-
- =head1 OPERATIONS
-
- Given the following notations:
-
- z1 = a + bi = r1 * exp(i * t1)
- z2 = c + di = r2 * exp(i * t2)
- z = <any complex or real number>
-
- the following (overloaded) operations are supported on complex numbers:
-
- z1 + z2 = (a + c) + i(b + d)
- z1 - z2 = (a - c) + i(b - d)
- z1 * z2 = (r1 * r2) * exp(i * (t1 + t2))
- z1 / z2 = (r1 / r2) * exp(i * (t1 - t2))
- z1 ** z2 = exp(z2 * log z1)
- ~z1 = a - bi
- abs(z1) = r1 = sqrt(a*a + b*b)
- sqrt(z1) = sqrt(r1) * exp(i * t1/2)
- exp(z1) = exp(a) * exp(i * b)
- log(z1) = log(r1) + i*t1
- sin(z1) = 1/2i (exp(i * z1) - exp(-i * z1))
- cos(z1) = 1/2 (exp(i * z1) + exp(-i * z1))
- abs(z1) = r1
- atan2(z1, z2) = atan(z1/z2)
-
- The following extra operations are supported on both real and complex
- numbers:
-
- Re(z) = a
- Im(z) = b
- arg(z) = t
-
- cbrt(z) = z ** (1/3)
- log10(z) = log(z) / log(10)
- logn(z, n) = log(z) / log(n)
-
- tan(z) = sin(z) / cos(z)
- cotan(z) = 1 / tan(z)
-
- asin(z) = -i * log(i*z + sqrt(1-z*z))
- acos(z) = -i * log(z + sqrt(z*z-1))
- atan(z) = i/2 * log((i+z) / (i-z))
- acotan(z) = -i/2 * log((i+z) / (z-i))
-
- sinh(z) = 1/2 (exp(z) - exp(-z))
- cosh(z) = 1/2 (exp(z) + exp(-z))
- tanh(z) = sinh(z) / cosh(z)
- cotanh(z) = 1 / tanh(z)
-
- asinh(z) = log(z + sqrt(z*z+1))
- acosh(z) = log(z + sqrt(z*z-1))
- atanh(z) = 1/2 * log((1+z) / (1-z))
- acotanh(z) = 1/2 * log((1+z) / (z-1))
-
- The I<root> function is available to compute all the I<n>th
- roots of some complex, where I<n> is a strictly positive integer.
- There are exactly I<n> such roots, returned as a list. Getting the
- number mathematicians call C<j> such that:
-
- 1 + j + j*j = 0;
-
- is a simple matter of writing:
-
- $j = ((root(1, 3))[1];
-
- The I<k>th root for C<z = [r,t]> is given by:
-
- (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
-
- The I<spaceshift> operation is also defined. In order to ensure its
- restriction to real numbers is conform to what you would expect, the
- comparison is run on the real part of the complex number first,
- and imaginary parts are compared only when the real parts match.
-
- =head1 CREATION
-
- To create a complex number, use either:
-
- $z = Math::Complex->make(3, 4);
- $z = cplx(3, 4);
-
- if you know the cartesian form of the number, or
-
- $z = 3 + 4*i;
-
- if you like. To create a number using the trigonometric form, use either:
-
- $z = Math::Complex->emake(5, pi/3);
- $x = cplxe(5, pi/3);
-
- instead. The first argument is the modulus, the second is the angle (in radians).
- (Mnmemonic: C<e> is used as a notation for complex numbers in the trigonometric
- form).
-
- It is possible to write:
-
- $x = cplxe(-3, pi/4);
-
- but that will be silently converted into C<[3,-3pi/4]>, since the modulus
- must be positive (it represents the distance to the origin in the complex
- plane).
-
- =head1 STRINGIFICATION
-
- When printed, a complex number is usually shown under its cartesian
- form I<a+bi>, but there are legitimate cases where the polar format
- I<[r,t]> is more appropriate.
-
- By calling the routine C<Math::Complex::display_format> and supplying either
- C<"polar"> or C<"cartesian">, you override the default display format,
- which is C<"cartesian">. Not supplying any argument returns the current
- setting.
-
- This default can be overridden on a per-number basis by calling the
- C<display_format> method instead. As before, not supplying any argument
- returns the current display format for this number. Otherwise whatever you
- specify will be the new display format for I<this> particular number.
-
- For instance:
-
- use Math::Complex;
-
- Math::Complex::display_format('polar');
- $j = ((root(1, 3))[1];
- print "j = $j\n"; # Prints "j = [1,2pi/3]
- $j->display_format('cartesian');
- print "j = $j\n"; # Prints "j = -0.5+0.866025403784439i"
-
- The polar format attempts to emphasize arguments like I<k*pi/n>
- (where I<n> is a positive integer and I<k> an integer within [-9,+9]).
-
- =head1 USAGE
-
- Thanks to overloading, the handling of arithmetics with complex numbers
- is simple and almost transparent.
-
- Here are some examples:
-
- use Math::Complex;
-
- $j = cplxe(1, 2*pi/3); # $j ** 3 == 1
- print "j = $j, j**3 = ", $j ** 3, "\n";
- print "1 + j + j**2 = ", 1 + $j + $j**2, "\n";
-
- $z = -16 + 0*i; # Force it to be a complex
- print "sqrt($z) = ", sqrt($z), "\n";
-
- $k = exp(i * 2*pi/3);
- print "$j - $k = ", $j - $k, "\n";
-
- =head1 BUGS
-
- Saying C<use Math::Complex;> exports many mathematical routines in the caller
- environment. This is construed as a feature by the Author, actually... ;-)
-
- The code is not optimized for speed, although we try to use the cartesian
- form for addition-like operators and the trigonometric form for all
- multiplication-like operators.
-
- The arg() routine does not ensure the angle is within the range [-pi,+pi]
- (a side effect caused by multiplication and division using the trigonometric
- representation).
-
- All routines expect to be given real or complex numbers. Don't attempt to
- use BigFloat, since Perl has currently no rule to disambiguate a '+'
- operation (for instance) between two overloaded entities.
-
- =head1 AUTHOR
-
- Raphael Manfredi <F<Raphael_Manfredi@grenoble.hp.com>>
-